Search results for "Hopfield network"
showing 7 items of 7 documents
Exponential Transients in Continuous-Time Symmetric Hopfield Nets
2001
We establish a fundamental result in the theory of continuous-time neural computation, by showing that so called continuous-time symmetric Hopfield nets, whose asymptotic convergence is always guaranteed by the existence of a Liapunov function may, in the worst case, possess a transient period that is exponential in the network size. The result stands in contrast to e.g. the use of such network models in combinatorial optimization applications. peerReviewed
Are Neural Networks Imitations of Mind?
2015
Artificial neural networks are often understood as a good way to imitate mind through the web structure of neurons in brain, but the very high complexity of human brain prevents to consider neural networks as good models for human mind;anyway neural networks are good devices for computation in parallel. The difference between feed-forward and feedback neural networks is introduced; the Hopfield network and the multi-layers Perceptron are discussed. In a very weak isomorphism (not similitude) between brain and neural networks, an artificial form of short term memory and of acknowledgement, in Elman neural networks, is proposed.
A NEURAL NETWORK PRIMER
1994
Neural networks are composed of basic units somewhat analogous to neurons. These units are linked to each other by connections whose strength is modifiable as a result of a learning process or algorithm. Each of these units integrates independently (in paral lel) the information provided by its synapses in order to evaluate its state of activation. The unit response is then a linear or nonlinear function of its activation. Linear algebra concepts are used, in general, to analyze linear units, with eigenvectors and eigenvalues being the core concepts involved. This analysis makes clear the strong similarity between linear neural networks and the general linear model developed by statisticia…
On the Computational Complexity of Binary and Analog Symmetric Hopfield Nets
2000
We investigate the computational properties of finite binary- and analog-state discrete-time symmetric Hopfield nets. For binary networks, we obtain a simulation of convergent asymmetric networks by symmetric networks with only a linear increase in network size and computation time. Then we analyze the convergence time of Hopfield nets in terms of the length of their bit representations. Here we construct an analog symmetric network whose convergence time exceeds the convergence time of any binary Hopfield net with the same representation length. Further, we prove that the MIN ENERGY problem for analog Hopfield nets is NP-hard and provide a polynomial time approximation algorithm for this p…
Mapping discounted and undiscounted Markov Decision Problems onto Hopfield neural networks
1995
This paper presents a framework for mapping the value-iteration and related successive approximation methods for Markov Decision Problems onto Hopfield neural networks, for both discounted and undiscounted versions of the finite state and action spaces. We analyse the asymptotic behaviour of the control sets and we give some estimates on the convergence rate for the value-iteration scheme. We relate the convergence properties on an energy function which represents the key point in mapping Markov Decision Problems onto Hopfield networks. Finally, an application from queueing systems in communication networks is taken into consideration and the results of computer simulation of Hopfield netwo…
Some Afterthoughts on Hopfield Networks
1999
In the present paper we investigate four relatively independent issues, which complete our knowledge regarding the computational aspects of popular Hopfield nets. In Section 2 of the paper, the computational equivalence of convergent asymmetric and Hopfield nets is shown with respect to network size. In Section 3, the convergence time of Hopfield nets is analyzed in terms of bit representations. In Section 4, a polynomial time approximate algorithm for the minimum energy problem is shown. In Section 5, the Turing universality of analog Hopfield nets is studied. peerReviewed
A Survey of Continuous-Time Computation Theory
1997
Motivated partly by the resurgence of neural computation research, and partly by advances in device technology, there has been a recent increase of interest in analog, continuous-time computation. However, while special-case algorithms and devices are being developed, relatively little work exists on the general theory of continuous- time models of computation. In this paper, we survey the existing models and results in this area, and point to some of the open research questions. Final Draft peerReviewed